Living metathesis polymerization of (*p-n*-butyl-o,o,m,m-tetra-fluorophenyl)acetylene by MoOCl₄-n-Bu₄Sn-EtOH (1:1:1)

Toshio Masuda^{1, *}, Kazuhiro Mishima¹, Hiroyuki Seki², Masakazu Nishida³, and Toshinobu Higashimura^{1, *}

¹Department of Polymer Chemistry, Kyoto University, Kyoto 606-01, Japan ²Research Laboratory for Development, Mitsubishi Oil Co., Ltd., Kawasaki 210, Japan ³Government Industrial Research Institute, Nagoya 462, Japan

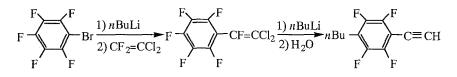
SUMMARY

Possibility of living metathesis polymerization by Mo catalysts was examined for (*p*-*n*-butyl-*o*, *o*, *m*, *m*-tetrafluorophenyl)acetylene, which has two fluorine atoms at both ortho positions. The MoOCl₄-*n*-Bu₄Sn-EtOH (1:1:1) catalyst yielded a polymer with narrow molecular weight distribution ($\overline{M}_w/\overline{M}_n = 1.12$), but the corresponding MoCl₅-based catalyst did not formed such a polymer. With the former catalyst, the numberaverage molecular weight of polymer increased in direct proportion to monomer conversion, while the molecular weight distribution remained narrow; this proves the livingness of the polymerization. The optimal conditions for the living polymerization were [*n*-Bu₄Sn]/[MoOCl₄] = ~1.0, [EtOH]/[MoOCl₄] = 0.5-1.5, and temperature \leq 30 °C. *n*-Butyl acetate and acetone as well as EtOH were effective as third catalyst components.

INTRODUCTION

It is known that phenylacetylene (PA) which has no substituent at the ortho position does not form a high molecular weight polymer in the presence of W and Mo catalysts (1). In contrast, PAs with bulky ortho-substituents (e.g., o-CF₃PA, o-Me₃SiPA, and o-Me₃GePA) yield high molecular weight polymers ($\overline{M}_{W} > 1x10^{\circ}$) (2-4). (p-n-Butyl-o, o, m, m-tetrafluorophenyl)-acetylene (p-BuF4PA), which carries two electron-withdrawing fluorine atoms at both ortho positions, also forms a high molecular weight polymer (5).

Thus far only a few reports have appeared regarding living polymerization of substituted acetylenes (6-9). In our previous papers, we have clarified that the $MoOCl_4$ (or $MoCl_5$)—*n*-Bu₄Sn-EtOH catalysts induce the living polymerization of *o*-CF₃PA (8), *o*-Me₃SiPA (9), and *o*-Me₃GePA (4). In contrast, PA itself does not polymerize in a living fashion with this catalyst. It suggests that side reactions such as chain transfer readily occur if there is no *ortho*-substituent. In the present


^{*}Corresponding authors

study, we investigated whether p-BuF₄PA, an *ortho*-substituted PA, would polymerize in a living manner with the Mo-based ternary catalysts.

EXPERIMENTAL

Materials

The main catalysts (MoOCl₄ and MoCl₅; from Strem; purities >99%) and organometallic cocatalysts were commercially obtained and used without further purification. Toluene as polymerization solvent and oxygen-containing compounds were purified according to standard methods (10). The monomer was synthesized as follows (11, 12):

Polymerization

Binary catalysts (MoOCl4–n-Bu₄Sn and MoCl₅–n-Bu₄Sn) were prepared under a dry nitrogen atmosphere by mixing the two components at a 1:1 ratio in toluene followed by aging at 30 °C for 15 min. Ternary catalysts (MoOCl4–n-Bu₄Sn–EtOH and MoCl₅–n-Bu₄Sn–EtOH) were obtained by addition of an equimolar amount of third component (oxygencontaining compound) to the above-stated mixtures followed by aging at 30 °C for another 15 min. Polymerizations were initiated by adding the monomer solution to the catalyst solution, and quenched by adding a small amount of methanol to the polymerizing system. The formed polymers were isolated by precipitation into methanol, and their yields were determined by gravimetry.

Monomer conversions were determined by gas chromatography, and number- and weight-average molecular weights (\overline{M}_n and \overline{M}_w , respectively) of the polymers were determined by gel permeation chromatography (GPC; polystyrene calibration). The initiator efficiency was evaluated by the mole ratios of the propagating species to molybdenum chlorides ([P*]/[Cat]).

RESULTS AND DISCUSSION

Polymerization by MoOCl₄- and MoCl₅-based catalysts

Figure 1 shows GPC charts and polydispersity ratios $(\overline{M}_w/\overline{M}_n)$ for the poly(*p*-BuF₄PA)s obtained with MoOCl₄- and MoCl₅-based catalysts. The polymers formed with MoOCl₄ alone and MoOCl₄-*n*-Bu₄Sn catalysts exhibited broad molecular-weight distributions (MWDs) (1.6 - 1.9). In contrast, the polymer produced with MoOCl₄-*n*-Bu₄Sn-EtOH ($\overline{M}_n =$

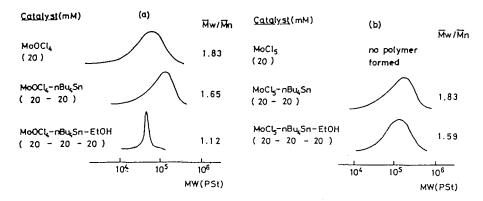


Figure 1. MWD curves of the $poly(p-BuF_4PA)s$ obtained with Mo catalysts (polymerized in toluene at 30 °C for 4 h; $[M]_0 = 0.50$ M).

6.39x104) showed a narrow MWD ($\overline{M}_w/\overline{M}_n = 1.12$), which suggests a living polymerization. No polymer was formed with MoCl₅ catalyst alone. MoCl₅-*n*-Bu₄Sn and MoCl₅-*n*-Bu₄Sn-EtOH yielded polymers whose MWDs were broader than those with the MoOCl₄-based counterparts. Consequently, only the MoOCl₄-*n*-Bu₄Sn-EtOH catalyst appears to effect living polymerization of the present monomer.

In order to see whether the polymerization by MoOCl₄-n-Bu₄Sn-EtOH is living or not, the dependences \overline{M}_{n} and $\overline{M}_{w}/\overline{M}_{n}$ of on monomer conversion were examined. Figure 2 manifests that \overline{M}_n increases in direct proportion to the monomer conversion and that the $\overline{M}_{w}/\overline{M}_{n}$ invariably remains ca. 1.1. It can, therefore, be concluded that the polymerization by MoOCl₄-n-Bu₄Sn-EtOH is living. This living polymerization should have been caused by the steric effect and not by the electronic effect of the two ortho fluorines, since both

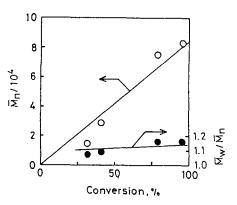


Figure 2. \overline{M}_n and $\overline{M}_w/\overline{M}_n$ of poly (*p*-BuF₄PA) as a function of monomer conversion (polymerized in toluene at 30 °C; [M]₀ = 0.50 M, [MoOCl₄] = [*n*-Bu₄Sn] = [EtOH] =20 mM).

electron-donating and -withdrawing *ortho*-substituents are effective for living polymerization (4, 8, 9).

Effect of n-Bu4Sn concentration

Figure 3 shows the effect of n-Bu₄Sn concentration on the polymerization of p-BuF₄PA by MoOCl₄-n-Bu₄Sn-EtOH. The polymer yield showed a maximum value when n-Bu₄Sn was equivalent to MoOCl₄

(20 mM). Although the $\overline{M}_{\rm w}/\overline{M}_{\rm n}$ took a large value of 2.23 in the absence of n-Bu₄Sn, the $\overline{M}_w/\overline{M}_n$ decreased with increasing [n-Bu₄Sn] to become around 1.1 at n-Bu₄Sn = 20 mM and above. Thus, the amount of n-Bu₄Sn should be equivalent to or more than MoOCl₄ of for that the formation of species effective in the living polymerization. The initiator efficiencies gradually increased with increasing [*n*-Bu₄Sn], but remained lower than 10%. It is known that the reaction of MoOCl₄ with n-Bu₄Sn forms metal carbenes faster than does the reaction with an acetylene monomer. Hence an adequate amount of n-Bu₄Sn will accelerate the initiation reaction, leading to narrow MWD of the formed polymer. Use of excess amounts of n-Bu₄Sn, however, reduced the catalyst activity.

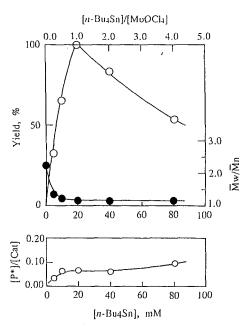
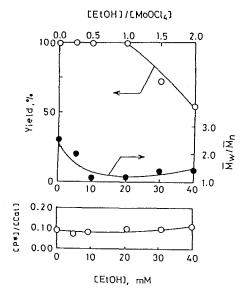
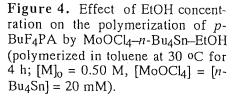


Figure 3. Effect of n-Bu₄Sn concentration on the polymerization of p-BuF₄PA by MoOCl₄-n-Bu₄Sn-EtOH (polymerized in toluene at 30 °C for 4 h; [M]₀ = 0.50 M, [MoOCl₄] = [EtOH] = 20 mM).

Effect of third catalyst components

The effect of various oxygen-containing compounds (O-compounds) as third components was examined in the MoOCl₄-*n*-Bu₄Sn-O-compound system (Table I). The MWD of the polymer obtained without a third component was broad $(\overline{M}_w/\overline{M}_n = 1.65)$. Ethanol, *n*-butyl acetate and acetone made the $\overline{M}_w/\overline{M}_n$ values smaller than 1.20, indicating their effectiveness as third components in the living polymerization. Phenol showed an adverse effect.


O-compound	Polymer b			
	Yield, %	$\overline{M}_{\rm n}/104~{\rm c}$	$\overline{M}_{\rm w}/\overline{M}_{\rm n}$	[P*]/[Cat]
None	100	6.85	1.65	0.084
EtOH	100	6.39	1.12	0.090
CH3COOnBu	100	7.43	1.13	0.077
Acetone	100	8.20	1.18	0.070
CH3COOtBu	86	6.98	1.34	0.071
CH ₃ COOH	100	6.08	1.30	0.094
Phenol	78	6.85	1.93	0.066


Table I. Effects of O-compounds on the polymerization of BTFPA by MoOCl₄-*n*-Bu₄Sn-EtOH (1:1:1) ^a

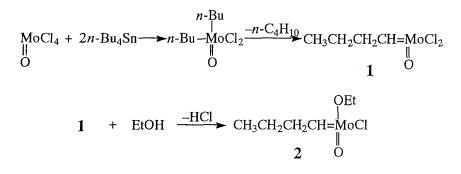

a In toluene, 30 °C, 4 h, $[M]_0 = 0.50$ M, $[MoOCl_4] = 20$ mM. b MeOH-insoluble product. c Determined by GPC.

Figure 4 depicts variations of polymer yield, $\overline{M}_{w}/\overline{M}_{n}$ and initiator efficiency with ethanol (a third component) concentration. The initiator efficiency was roughly 0.10 irrespective of ethanol concentration. The narrowest MWDs were achieved at the [EtOH]/[MoOCl₄] ratio from 0.5 to 1.5. This implies that there is an optimal region of ethanol concentration. The polymer yield was quantitative up to [EtOH] = 20mM and then decreased.

In a previous paper (8), we discussed the function of the third component in living polymerization and pointed out a possible reaction of ethanol with metal carbene as follows;

The role of ethanol, for example, is considered to replace a chlorine ligand of metal carbene 1 by an ethoxy ligand, forming metal carbene 2. Metal carbene 2 should be less active but more stable than 1 since the ethoxy ligand is less electron-withdrawing than the chlorine ligand. This is one of the reasons why the $MoOCl_4$ -*n*-Bu_4Sn-EtOH system works as a living polymerization catalyst. The decrease of polymer yield in the presence of excessive ethanol is interpretable in terms of the formation of a metal carbene having two

ethoxy ligands, which is even less active than 2.

Effect of temperature

As seen in Figure 5, the $\overline{M}_{\rm w}/\overline{M}_{\rm n}$ was small (< 1.20) at 0 and 30 °C, while it became as large as 1.7 at 60 °C. The initiator efficiency at 60 °C took a very small value, and the monomer conversion did not reach 100%. These findings suggest that the propagating species is unstable at high temperatures to like 60 0Csuffer termination and/or transfer reactions.

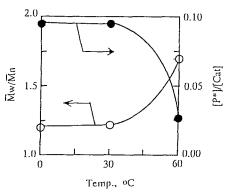


Figure 5. Effect of temperature on the polymerization of p-BuF₄PA by MoOCl₄-*n*-Bu₄Sn-EtOH (1:1:1) (polymerized in toluene for 24 h; [M]₀ = 0.50 M, [MoOCl₄] = 20 mM).

REFERENCES

- G. Costa, in *Comprehensive Polymer Science* (Ed. G. Allen), Vol. 4, Pergamon, Oxford, 1989, Chap. 9.
- 2. T. Masuda, T. Hamano, T. Higashimura, T. Ueda, and H. Muramatsu, *Macromolecules*, 21, 281 (1988).

- 3. T. Masuda, T. Hamano, K. Tsuchihara, and T. Higashimura, *Macromolecules*, 23, 1374 (1990).
- 4. T. Mizumoto, T. Masuda, and T. Higashimura, J. Polym. Sci., Part A, Polym. Chem., **31**, 2555 (1993).
- 5. T. Yoshimura, T. Masuda, T. Higashimura, K. Okuhara, and T.Ueda, *Macromolecules*, 24, 6053 (1991).
- 6 K. C. Wallace, A. H. Liu, W. M. Davis, and R. R. Schrock, Organometallics, 8, 644 (1989).
- 7. H. H. Fox and R. R. Schrock, Organometallics, 11, 2763 (1992).
- 8. T. Masuda, K. Mishima, J. Fujimori, M. Nishida, H. Muramatsu, and T. Higashimura, *Macromolecules*, **25**, 1401 (1992).
- 9. T. Masuda, J. Fujimori, M. Z. A. Rahman, and T. Higashimura, *Polym. J.*, **25**, 535 (1993).
- 10. D. D. Perrin, W. L. F. Armarego, and D. R. Perrin, *Purification of Laboratory Chemicals*, 2nd ed., Pergamon, Oxford, 1980.
- 11. K. Okuhara, Bull. Chem. Soc. Jpn., 61, 1625 (1988).
- 12. K. Okuhara, J. Org. Chem., 41, 1487 (1976).

Accepted November 18, 1993 S